Oleh: wancik | Jumat, 11 Juli 2008


3. Other Types of Hydraulic Cements

Although portland cements (Art. 5.2) are the most common modern hydraulic cements, several other kinds are in everyday use.


3.1 Aluminous Cements

These are prepared by fusing a mixture of aluminous and calcareous materials (usually bauxite and limestone) and grinding the resultant product to a fine powder. These cements are characterized by their rapid-hardening properties and the high strength developed at early ages. Table 5.3 shows the relative strengths of 4-in cubes of 1:2:4 concrete made with normal portland, high-early-strength portland, and aluminous cements.

Since a large amount of heat is liberated with rapidity by aluminous cement during hydration, care must be taken not to use the cement in places where this heat cannot be dissipated. It is usually not desirable to place aluminous-cement concretes in lifts of over 12 in; otherwise the temperature rise may cause serious weakening of the concrete.

Aluminous cements are much more resistant to the action of sulfate waters than are portland cements. They also appear to be much more resistant to attack by water containing aggressive carbon dioxide or weak mineral acids than the silicate cements. Their principal use is in concretes where advantage may be taken of their very high early strength or of their sulfate resistance, and where the extra cost of the cement is not an important factor.

Another use of aluminous cements is in combination with firebrick to make refractory concrete. As temperatures are increased, dehydration of the hydration products occurs. Ultimately, these compounds create a ceramic bond with the aggregates.


3.2 White Portland Cement

These produce mortars of brilliant white color for use in architectural applications. To obtain this white color in the cement, it is necessary to use raw materials with a low iron-oxide content, to use fuel free of pyrite, and to burn at a temperature above that for normal portland cement. The physical properties generally conform to the requirements of a Type I portland cement.


3.3 Natural Cements

Natural cements are formed by calcining a naturally occurring mixture of calcareous and argillaceous substances at a temperature below that at which sintering takes place. The “Specification for Natural Cement,” ASTM C10, requires that the temperature be no higher than necessary to drive off the carbonic acid gas. Since natural cements are derived from naturally occurring materials and no particular effort is made to adjust the composition, both the composition and properties vary rather widely. Some natural cements may be almost the equivalent of portland cement in properties; others are much weaker. Natural cements are principally used in masonry mortars and as an admixture in portland-cement concretes.


3.4 Limes

These are made principally of calcium oxide (CaO), occurring naturally in limestone, marble, chalk, coral, and shell. For building purposes, they are used chiefly in mortars. Limes are produced by driving out water from the natural materials. Their cementing properties are caused by the reabsorption of the expelled water and the formation of the same chemical compounds of which the original raw material was composed.

Hydraulic lime is made by calcining a limestone containing silica and alumina to a temperature short of incipient fusion. In slaking (hydration), just sufficient water is provided to hydrate the free lime so as to form sufficient free lime (CaO) to permit hydration and to leave unhydrated sufficient calcium silicates to give the dry powder its hydraulic properties. Because of the low silicate and high lime contents, hydraulic limes are relatively weak. They are principally used in masonry mortars.

Quicklime is the product of calcination (making powdery by heating) of limestone containing large proportions of calcium carbonate (CaCO3) and some magnesium carbonate (MgCO3). The calcination evaporates the water in the stone, heats the limestone to a high enough temperature for chemical dissociation, and drives off carbon dioxide as a gas, leaving the oxides of calcium and magnesium. The resulting calcium oxide (CaO), called quicklime, has a great affinity for water.

Quicklime intended for use in construction must first be combined with the proper amount of water to form a lime paste, a process called slaking.When quicklime is mixed with from two to three times its weight of water, the calcium oxide combines with the water to form calcium hydroxide, and sufficient heat is evolved to bring the entire mass to a boil. The resulting product is a suspension of finely divided calcium hydroxide (and magnesium oxide) which, upon cooling, stiffens to a putty. This putty, after a period of seasoning, is used principally in masonry mortar, to which it imparts workability. It may also be used as an admixture in concrete to improve workability.

Hydrated limes are prepared from quicklimes by the addition of a limited amount of water during the manufacturing process. Hydrated lime was developed so that greater control could be exercised over the slaking operation by having it carried out during manufacture rather than on the construction job. After the hydration process ceases to evolve heat, a fine, dry powder is left as the resulting product.

Hydrated lime can be used in the field in the same manner as quicklime, as a putty or paste, but it does not require a long seasoning period. It can also be mixed with sand while dry, before water is added. Hydrated lime can be handled more easily than quicklime because it is not so sensitive to moisture. The plasticity of mortars made with hydrated limes, although better than that obtained with most cements, is not nearly so high as that of mortars made with an equivalent amount of slaked quicklime putty.


3.5 Gypsum Cements

Mineral gypsum, when pure, consists of crystalline calcium sulfate dihydrate (CaSO4 . 2H2O). When it is heated to temperatures above 212 °F but not exceeding 374 °F, three-fourths of the water of crystallization is driven off. The resulting product, CaSO4 . ½ H2O, called plaster of paris, is a fine, white powder. When recombined with water, it sets rapidly and attains strength on drying by reforming the original calcium sulfate dihydrate. Plaster of paris is used as a molding or gaging plaster or is combined with fiber or sand to form a “cement” plaster. Gypsum plasters have a strong set and gain their full strength when dry.


3.6 Oxychloride Cements

Magnesium oxychloride cements are formed by a reaction between lightly calcined magnesium oxide (MgO) and a strong aqueous solution of magnesium chloride (MgCl2). The resulting product is a dense, hard cementing material with a crystalline structure. This oxychloride cement, or Sorel cement, develops better bonding with aggregate than portland cement. It is often mixed with colored aggregate in making flooring compositions or used to bond wood shavings or sawdust in making partition block or tile. It is moderately resistant to water but should not be used under continuously wet conditions. A similar oxychloride cement is made by mixing zinc oxide and zinc chloride.


3.7 Masonry Cements

Masonry cements, or mortar cements, are intended to be mixed with sand and used for setting unit masonry, such as brick, tile, and stone. They may be any one of the hydraulic cements already discussed or mixtures of them in any proportion.

Many commercial masonry cements are mixtures of portland cement and pulverized limestone, often containing as much as 50 or 60% limestone. They are sold in bags containing from 70 to 80 lb, each bag nominally containing a cubic foot. Price per bag is commonly less than that of portland cement, but because of the use of the lighter bag, cost per ton is higher than that of portland cement.

Since there are no limits on chemical content and physical requirements, masonry cement specifications are quite liberal. Some manufacturers vary the composition widely, depending on competition, weather conditions, or availability of materials. Resulting mortars may vary widely in properties.


3.8 Fly Ashes

Fly ash meeting the requirements of ASTM C618, “Specification for Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Portland Cement Concrete,” is generally used as a cementitious material as well as an admixture.

Natural pozzolans are derived from some diatomaceous earths, opaline cherts and shales, and other materials. While part of a common ASTM designation with fly ash, they are not as readily available as fly ashes and thus do not generate the same level of interest or research.

Fly ashes are produced by coal combustion, generally in an electrical generating station. The ash that would normally be released through the chimney is captured by various means, such as electrostatic precipitators. The fly ash may be sized prior to shipment to concrete suppliers.

All fly ashes possess pozzolanic properties, the ability to react with calcium hydroxide at ordinary temperatures to form compounds with cementitious properties. When cement is mixed with water, a chemical reaction (hydration) occurs. The product of this reaction is calcium silicate hydrate (CSH) and calcium hydroxide [Ca(OH)2]. Fly ashes have high percentages of silicon dioxide (SiO2). In the presence of moisture, the Ca(OH)2, will react with the SiO2 to form another CSH.

Type F ashes are the result of burning anthracite or bituminous coals and possess pozzolanic properties. They have been shown by research and practice to provide usually increased sulfate resistance and to reduce alkali-aggregate expansions. Type C fly ashes result from burning lignite or subbituminous coals. Because of the chemical properties of the coal, the Type C fly ashes have some cementitious properties in addition to their pozzolanic properties. Type C fly ashes may reduce the durability of concretes into which they are incorporated.


3.9 Silica Fume (Microsilica)

Silica fume, or microsilica, is a condensed gas, the by-product of metallic silicon or ferrosilicon alloys produced by electric arc furnaces. [While both terms are correct, microsilica (MS) is a less confusing name.] The Canadian standard CAN/ CSA-A23.5-M86, “Supplementary Cementing Materials,” limits amorphous SiO2, to a maximum of 85% and oversize to 10%. Many microsilicas contain more than 90% SiO2.

MS has an average diameter of 0.1 to 0.2 mm, a particle size of about 1% that of portland cement. Because of this small size, it is not possible to utilize MS in its raw form. Manufacturers supply it either densified, in a slurry (with or without water-reducing admixtures), or pelletized. Either the densified or slurried MS can be utilized in concrete. The pelletized material is densified to the point that it will not break down during mixing.

Because of its extremely small size, MS imparts several useful properties to concrete. It greatly increases long-termstrength. It very efficiently reacts with the Ca(OH)2 and creates a beneficial material in place of a waste product. MS is generally used in concrete with a design strength in excess of 12,000 psi. It provides increased sulfate resistance to concrete, and it significantly reduces the permeability of concrete. Also, its small size allows MS to physically plug microcracks and tiny openings.


4. Mortars and Grouts

Mortars are composed of a cement, fine aggregate (sand), and water. They are used for bedding unit masonry, for plasters and stuccoes, and with the addition of coarse aggregate, for concrete. Properties of mortars vary greatly, being dependent on the properties of the cement used, ratio of cement to sand, characteristics and grading of the sand, and ratio of water to solids. Grouts are similar in composition tomortars but mixes are proportioned to produce, before setting, a flowable consistency without segregation of the components.


(to be continue..)







Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s


%d blogger menyukai ini: